Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Poly[(N, N-dimethylformamide- κO)($\mu_{3}-4,4^{\prime}$-ethylenedibenzoato- $\kappa^{5} O, O^{\prime}:-$ $\left.O^{\prime}: O^{\prime \prime}, O^{\prime \prime \prime}\right)($ pyrazino $2,3-f][1,10]$ phen-anthroline- $\kappa^{2} N^{8}, N^{9}$)lead(II)]

Qian Qiao, ${ }^{\text {a }}$ Guo-Qiang Wu, ${ }^{\text {a }}$ Tian-Di Tang ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: tangtiandi888@yahoo.com.cn

Received 5 February 2009
Accepted 13 February 2009
Online 7 March 2009
In the title $\mathrm{Pb}^{\text {II }}$ coordination polymer, $\left[\mathrm{Pb}\left(\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)\right]_{n}$, each $\mathrm{Pb}^{\text {II }}$ atom is eight-coordinated by two chelating N atoms from one pyrazino[2,3- $f][1,10]$ phenanthroline (L) ligand, one dimethylformamide (DMF) O atom and five carboxylate O atoms from three different 4,4'-ethylenedibenzoate (eedb) ligands. The eedb dianions bridge neighbouring $\mathrm{Pb}^{\text {II }}$ centres through four typical $\mathrm{Pb}-\mathrm{O}$ bonds and one longer $\mathrm{Pb}-\mathrm{O}$ interaction to form a twodimensional structure. The C atoms from the L and eedb ligands form $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the O atoms of eedb and DMF ligands, which further stabilize the structure. The title compound is the first $\mathrm{Pb}^{\mathrm{II}}$ coordination polymer incorporating the L ligand.

Comment

Until recently, research on coordination polymers has focused mainly on incorporation of s-, d - and even f-block metal ions as the coordination centres, while less consideration has been given to metals of the p block (Xu et al., 2005). p-Block metalorganic materials may be important in applications such as electroluminescent devices or organic light-emitting diodes (OLEDs), and so have stimulated much interest (Tsuboi \& Sifsten, 1991; Singh \& Richter, 2004). As far as the intrinsic appeal of $\mathrm{Pb}^{\mathrm{II}}$ is concerned, the presence of a $6 s^{2}$ outer electron configuration not only leads to interesting topological arrangements, but also plays an important role in the luminescence activity of any resulting complex (Deo \& Godwin, 2000; $\mathrm{Li} \& \mathrm{Lu}, 2000$). Lead(II), as a toxic heavy metal, is commonly found in critical life cycles due to its widespread use in numerous industrial applications (Andersen et al., 2006). The possible molecular mechanisms of the toxicity of $\mathrm{Pb}^{\mathrm{II}}$ may affect several different types of protein. Therefore, good knowledge of the coordination properties of $\mathrm{Pb}^{\mathrm{II}}$, including
aspects such as the lone pair of electrons, the coordination number and the coordination geometry, is crucial for understanding the toxicological properties of lead(II).

1,10-Phenanthroline (phen) has been widely used to build supramolecular architectures because of its excellent coordinating ability and large conjugated system that can easily form $\pi-\pi$ interactions (Wang et al., 2005; Tong et al., 2000; Zheng et al., 2001). However, far less attention has been given to its derivatives (Yang, Ma et al., 2007; Yang, Li et al., 2007). Pyrazino[2,3-f][1,10]phenanthroline (L) is an important phen derivative. It possesses aromatic systems and is a good candidate for the construction of metal-organic supramolecular architectures (Wang et al., 2007). To the best of our knowledge, coordination polymers constructed from a $\mathrm{Pb}^{\text {II }}$ dicarboxylate ligand and L have not been documented so far (Yang, Ma et al., 2007). Here, we have selected the $4,4^{\prime}$-ethylenedibenzoate dianion (eedb) as an organic linker and L as an N, N^{\prime}-chelating ligand, generating the title new $\mathrm{Pb}^{\mathrm{II}}$ coordination polymer, $[\mathrm{Pb}(\mathrm{eedb})(L)(\mathrm{DMF})]$ (DMF is dimethylformamide), (I), the structure of which we now report.

Selected bond lengths for (I) are given in Table 1. As shown in Fig. 1, each $\mathrm{Pb}^{\mathrm{II}}$ atom is eight-coordinated by two N atoms from one L ligand, one DMF O atom, and five carboxylate O atoms from three different eedb ligands \{comprising four typical $\mathrm{Pb}-\mathrm{O}$ bonds [2.352 (4)-2.707 (5) \AA] and one longer $\mathrm{Pb}-\mathrm{O}$ interaction [3.055 (5) \AA] $]$. The typical $\mathrm{Pb}-\mathrm{O}$ distances in (I) (Table 1) are comparable with those found in another crystallographically characterized $\mathrm{Pb}^{\mathrm{II}}$ complex, viz. [$\mathrm{Pb}-$ $\left(\mathrm{NO}_{3}\right)_{2}$ (bpno) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ (bpno is $4,4^{\prime}$-bipyridine N, N^{\prime}-dioxide; Xu et al., 2005).

As depicted in Fig. 2, the eedb dianions bridge two neighbouring $\mathrm{Pb}^{\mathrm{II}}$ centres through typical $\mathrm{Pb}-\mathrm{O}$ bonds, resulting in a one-dimensional chain structure along the b axis. It is noted that the L ligands are extended on both sides of the chains. Clearly, the N-containing chelating L ligand plays an important role in the formation of the chain structure. Two N atoms from the L ligand occupy two coordination positions of the $\mathrm{Pb}^{\mathrm{II}}$ atom, while the remaining coordination positions are available for eedb ligands, allowing the formation of the chain structure. Notably, if the longer $\mathrm{Pb}-\mathrm{O}$ interaction [3.055 (5) \AA] is considered, a two-dimensional structure is formed (Fig. 3). To the best of our knowledge, no other $\mathrm{Pb}^{\text {II }}$

Figure 1

A view of the local coordination of the $\mathrm{Pb}^{\mathrm{II}}$ cation in (I), showing the atom-numbering scheme. Only one conformation of the DMF molecule is shown. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) $-x+2$, $y+\frac{1}{2},-z+\frac{1}{2} ;$ (ii) $-x+1,-y+1,-z+1$.]
coordination polymer containing the chelating ligand L has been reported so far, although several $\mathrm{Pb}^{\mathrm{II}}$ complexes including phen-like chelating ligands have been reported (Yang, Ma et al., 2007). The C atoms from the L and eedb ligands form $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the O atoms of eedb and DMF ligands, which stabilize the structure of (I) (Table 2).

It is noteworthy that the structure of (I) is different from that of the related structure $\left[\mathrm{Zn}(\right.$ eedb $\left.)(L)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 0.5 \mathrm{DMF}$ (Wang et al., 2008), in which the eedb dianions bridge neighbouring $\mathrm{Zn}^{\mathrm{II}}$ centres to give a one-dimensional chain structure in the $a b$ plane. In that structure, a three-dimensional supramolecular architecture is formed through two types of $\pi-\pi$ interactions between neighbouring chains. One is between the centrosymmetrically related L ligands, and the second is between L and eedb ligands. The structure of (I) is also entirely different from that of the related polymer $\left[\mathrm{Cd}_{2}(1,4-\right.$ ndc $)_{2}(L)_{2}$] (1,4-ndc is naphthalene-1,4-dicarboxylate; Qiao et al., 2008), in which the $1,4-n d c$ ligands link the $\mathrm{Cd}^{\text {II }}$ centres to give an interesting six-connected three-dimensional α-Porelated architecture.

The stereochemical activity of the $\mathrm{Pb}^{\text {II }}$ lone pair of electrons is an interesting topic and is often discussed. The geometries of $\mathrm{Pb}^{\text {II }}$ complexes can be classified as holo- and hemidirected. Holodirected refers to $\mathrm{Pb}^{\mathrm{II}}$ complexes in which the bonds to the ligand atoms are located throughout the surface of an

Figure 2
A view of the one-dimensional chain of (I) along the b axis.
encompassing sphere, while hemidirected refers to those cases in which the bonds to the ligand atoms are directed through only part of an encompassing sphere (Shimoni-Livny et al., 1998). In compound (I), the central $\mathrm{Pb}^{\mathrm{II}}$ atom is eight-coordinated by two N atoms, one DMF molecule and five carboxylate O atoms. The coordination of the ligands at $\mathrm{Pb}^{\mathrm{II}}$ does not leave room for a lone pair of electrons. Therefore, this coordination environment can be considered somewhat holodirected. To date, several $\mathrm{Pb}^{\mathrm{II}}$ coordination polymers with different phen derivatives have been reported (Yang, Li et al., 2007). The $\mathrm{Pb}^{\mathrm{II}}$ coordination geometry of the polymer $[\mathrm{Pb}(1,4-$ ndc)(tcpn $)_{2}$] [tcpn is 2-($1 H-1,3,7,8$-tetraazacyclopenta[$\left.l\right]$ phen-]phenanthren-2-yl)naphthol] is very similar to that observed in (I). In that structure, the $\mathrm{Pb}^{\mathrm{II}}$ atom is also eight-coordinated by four N atoms and four carboxylate O atoms, and the bonds to the ligand atoms are distributed throughout the surface of the encompassing $\mathrm{Pb}^{\mathrm{II}}$ sphere. Therefore, the coordination environment of the $\mathrm{Pb}^{\mathrm{II}}$ atom can also be considered as holodirected.

Figure 3
A view of the two-dimensional supramolecular structure of (I).

Experimental

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.166 \mathrm{~g}, 0.5 \mathrm{mmol}), \mathrm{H}_{2}$ eedb $(0.133 \mathrm{~g}, 0.5 \mathrm{mmol})$ and L ($0.121 \mathrm{~g}, 0.5 \mathrm{mmol}$) were dissolved in a mixture of DMF (6 ml) and distilled water $(8 \mathrm{ml})$. The resulting mixture was stirred for about 1 h at room temperature, sealed in a 23 ml Teflon-lined stainless steel autoclave and heated at 398 K for 5 d under autogenous pressure. The reaction system was cooled gradually to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. Pale-yellow crystals of (I) suitable for single-crystal X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with DMF, and dried in air at ambient temperature (yield 72%, based on $\mathrm{Pb}^{\mathrm{II}}$).

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{4}\right)\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4}\right)-\right.$
$\beta=102.7510(10)^{\circ}$ $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)$]
$V=2844.8$ (4) \AA^{3}
$M_{r}=778.77$
Monoclinic, $P 2_{1} / c$
$a=9.0255$ (7) \AA
$b=25.5628$ (19) \AA
$c=12.6422(9) \AA$
$Z=4$
Mo $K \alpha$ radiation
$\mu=5.98 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.23 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Bruker APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.340, T_{\text {max }}=0.412$
(expected range $=0.281-0.341)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.089$
$S=1.03$
5224 reflections
428 parameters

72 restraints
H-atom parameters constrained
14893 measured reflections
5224 independent reflections
4134 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\Delta \rho_{\text {max }}=1.95 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.92 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters (\AA).

$\mathrm{Pb} 1-\mathrm{O} 1$	$2.448(4)$	$\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{ii}}$	$3.055(5)$
$\mathrm{Pb} 1-\mathrm{O} 2$	$2.707(5)$	$\mathrm{Pb} 1-\mathrm{O} 5$	$3.023(17)$
$\mathrm{Pb} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.352(4)$	$\mathrm{Pb} 1-\mathrm{N} 1$	$2.594(5)$
$\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.638(4)$	$\mathrm{Pb} 1-\mathrm{N} 4$	$2.695(5)$

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 3^{\text {iii }}$	0.93	2.52	3.435 (9)	168
C15-H15 . OO3 ${ }^{\text {iii }}$	0.93	2.65	3.567 (8)	170
C17-H17...O1	0.93	2.26	2.968 (8)	132
C18-H18 \cdots O5 ${ }^{\text {ii }}$	0.93	2.64	3.22 (2)	121
C18-H18. ${ }^{\text {O }} 5^{\text {/ii }}$	0.93	2.39	3.309 (11)	170
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O} 2^{\text {iv }}$	0.93	2.27	3.090 (9)	147

[^0]Carbon-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. As the $\mathrm{C}-\mathrm{C}$ distances of the N -heterocycle were unreasonable, the central six-carbon ring was refined as a rigid hexagon with sides of 1.39 A. The DMF ligand is disordered over two sites each with a site occupancy of 0.5 . The $\mathrm{C}=\mathrm{O}$ distances were restrained to 1.25 (1) \AA, $\mathrm{N}-\mathrm{C}(=\mathrm{O})$ to $1.35(1) \AA$ and $\mathrm{N}-\mathrm{CH}_{3}$ to 1.45 (1) \AA. The C, N and O atoms of each component was restrained to be nearly planar. The anisotropic displacement parameters were restrained to be nearly isotropic. The displacement parameters of the $\mathrm{O} 5 / \mathrm{O5}^{\prime}$ pair were restrained to be identical and were further restrained to be nearly isotropic. The final difference Fourier map has a large peak at $1 \AA$ from Pb 1 but is otherwise featureless.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

The authors thank Wenzhou University and the University of Malaya for generously supporting this study.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG3189). Services for accessing these data are described at the back of the journal.

References

Andersen, R. J., Targiani, R. C., Hancock, R. D., Stern, C. L., Goldberg, D. P. \& Godwin, H. A. (2006). Inorg. Chem. 45, 6574-6576.
Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Deo, S. \& Godwin, H. A. (2000). J. Am. Chem. Soc. 122, 174-175.
Li, J. \& Lu, Y. (2000). J. Am. Chem. Soc. 122, 10466-10467.
Qiao, Q., Zhao, Y.-J. \& Tang, T.-D. (2008). Acta Cryst. C64, m336-m338.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shimoni-Livny, L., Glusker, J. P. \& Bock, C. W. (1998). Inorg. Chem. 37, 18531867.

Singh, P. \& Richter, M. M. (2004). Inorg. Chim. Acta, 357, 1589-1592.
Tong, M. L., Chen, H. J. \& Chen, X. M. (2000). Inorg. Chem. 39, $2235-$ 2238.

Tsuboi, T. \& Sifsten, P. (1991). Phys. Rev. B, 43, 1777-1780.
Wang, X.-L., Bi, Y.-F., Lin, H.-Y. \& Liu, G.-C. (2007). Cryst. Growth Des. 7, 1086-1091.
Wang, X. L., Qin, C., Wang, E. B., Su, Z. M., Xu, L. \& Batten, S. R. (2005). Chem. Commun. pp. 4789-4790.
Wang, X.-Y., Wang, J.-J. \& Ng, S. W. (2008). Acta Cryst. C64, m401-m404.
Westrip, S. P. (2009). publCIF. In preparation.
Xu, Y., Yuan, D., Han, L., Ma, E., Wu, M., Lin, Z. \& Hong, M. (2005). Eur. J. Inorg. Chem. pp. 2054-2059.
Yang, J., Li, G.-D., Cao, J.-J., Yue, Q., Li, G.-H. \& Chen, J.-S. (2007). Chem. Eur. J. 13, 3248-3261.

Yang, J., Ma, J.-F., Liu, Y.-Y., Ma, J.-C. \& Batten, S. R. (2007). Inorg. Chem. 46, 6542-6555.
Zheng, S. L., Tong, M. L., Fu, R. W., Chen, X. M. \& Ng, S. W. (2001). Inorg. Chem. 40, 3562-3569.

[^0]: Symmetry codes: (ii) $-x+1,-y+1,-z+1$; (iii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $x, y, z+1$.

